
Neural Partitioning Pyramids for Denoising Monte Carlo Renderings:

Supplementary Material

MARTIN BALINT,Max Planck Institute for Informatics, Germany

KRZYSZTOF WOLSKI,Max Planck Institute for Informatics, Germany

KAROL MYSZKOWSKI,Max Planck Institute for Informatics, Germany

HANS-PETER SEIDEL,Max Planck Institute for Informatics, Germany

RAFAŁ MANTIUK, University of Cambridge, United Kingdom

CCS Concepts: • Computing methodologies → Image processing; Ray
tracing.

ACM Reference Format:
Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel,

and Rafał Mantiuk. 2023. Neural Partitioning Pyramids for Denoising Monte

Carlo Renderings: Supplementary Material. In Special Interest Group on Com-
puter Graphics and Interactive Techniques Conference Conference Proceedings
(SIGGRAPH ’23 Conference Proceedings), August 6–10, 2023, Los Angeles, CA,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3588432.

3591562

A BACKBONE ARCHITECTURE

A.1 Input feature mappings

When feeding 𝑳𝑥𝑦𝑠𝑡 and 𝒓𝑥𝑦𝑠𝑡 to our encoder, we compress radi-

ance 𝑳 and depth disparity 1/𝑑 using the log+1 curve to lessen the

numerical effect of outliers in our training data:

𝜏 : 𝑳 ↦→ log

(
𝑳

E𝑥𝑦𝑠 [𝑳]
+ 1

)
, (1)

𝑑 ↦→ log

(
1

𝑑
+ 1

)
. (2)

As our training and evaluation scenes have varying exposure, we

scale radiance per frame, mapping the average over all (𝑥,𝑦) coordi-
nates, colour channels and samples to one when providing radiance

data as input to our neural networks. In Equation 1, dividing by

E𝑥𝑦𝑠 [𝑳] denotes this operation.

A.2 Sample encoder

For our sample encoder we use a 32-channel, three-layer, fully-

connected network with leaky ReLU activations.

A.3 OursSmall

For our smaller network we consider a typical U-Net structrue

commonly used in previous work [Hasselgren et al. 2020; Işık et al.

2021; Munkberg and Hasselgren 2020]. Here, we use max-pooling,

LeakyReLU activations and concatenating skip connections.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0159-7/23/08.

https://doi.org/10.1145/3588432.3591562

Our channel counts are the following:

𝒄96𝒄96𝒅 → 𝒄96𝒄128𝒅 → 𝒄128𝒄192𝒅 → 𝒄192𝒄256𝒅

→ 𝒄256𝒄384𝒅 → 𝒄512𝒄512𝒄384𝒖 → 𝒄384𝒄256𝒖 → 𝒄256𝒄192𝒖

→ 𝒄192𝒄128𝒖 → 𝒄128𝒄96𝒖 → 𝒄96𝒄96 (3)

A.4 OursLarge

Our 30 million parameter network (OursLarge) uses ConvNext

[Liu et al. 2022] blocks in the Restormer-like [Zamir et al. 2022]

configuration as described in Figure 1.

B DATASET

Inspired by Hypersim [Roberts et al. 2021], we leverage Evermo-

tion’s Archinteriors and Archexteriors collections to build our train-

ing dataset. These scenes contain production quality assets with

detailed physically based materials, far exceeding the quality and

diversity of datasets used in previous work. The light transport

of our training scenes also better matches photorealistic produc-

tion scenarios, in which we expect our denoiser to have the largest

impact.

We optimise 7 exterior and 8 interior scenes for the Falcor [Kall-

weit et al. 2022] renderer and manually add camera trajectories. We

generate 1024 64-frame-long training sequences. We randomly pick

a scene, a one-second camera trajectory segment, and an environ-

ment map for each sequence. We further perturb the camera tra-

jectory and add randomly moving sphere lights and objects nearby

the trajectory. We pick objects from the Amazon Berkeley Objects

Dataset [Collins et al. 2022] containing 7941 high-quality 3D models

with physically based materials and environment maps from the

Poly Haven HDRI Dataset containing 388 4K environment maps. We

randomise our generated sphere lights’ colour, size, and intensity.

We extract 256 × 256 motion compensated patches cropped from

a 1080 × 1920 virtual camera frames. The motion is compensated

by adjusting the crop offset according to the average optical flow

in the cropped region. This allows our training patches to capture

more temporal information. See Figure 2 for example frames of our

training set. We will share our dataset with rendered content upon

acceptance.

We choose to render our scenes with Falcor [Kallweit et al. 2022],

a fast GPU-based renderer suitable for real-time and interactive pre-

views, better matching potential applications. Most previous works

were performed using PBRT [Pharr et al. 2016], a CPU-based offline

renderer using slower but more advanced sampling algorithms; Fal-

cor’s path tracer requires double the sample count to meet the same

1

HTTPS://ORCID.ORG/0000-0001-6689-4770
HTTPS://ORCID.ORG/0000-0003-2290-0299
HTTPS://ORCID.ORG/0000-0002-8505-4141
HTTPS://ORCID.ORG/0000-0002-1343-8613
HTTPS://ORCID.ORG/0000-0003-2353-0349
https://doi.org/10.1145/3588432.3591562
https://doi.org/10.1145/3588432.3591562
https://doi.org/10.1145/3588432.3591562
https://polyhaven.com/

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafał Mantiuk

Conv2D
1 x 1

Input to 128 ch

ConvNext block x4

Pixel unshuffle

Conv2D
1 x 1

512 to 128 ch

ConvNext block x4

Pixel unshuffle

Conv2D
1 x 1

512 to 256 ch

ConvNext block x6

Pixel unshuffle

Conv2D
1 x 1

1024 to 256 ch

ConvNext block x6

Pixel unshuffle

Conv2D
1 x 1

1024 to 512 ch
ConvNext block

x8

Pixel shuffle

Conv2D
1 x 1

384 to 256 ch

ConvNext blockx6

Pixel shuffle

Conv2D
1 x 1

320 to 256 ch

ConvNext blockx6

Pixel shuffle

Conv2D
1 x 1

192 to 128 ch

ConvNext blockx4

Pixel shuffle

Conv2D
1 x 1

192 to 128 ch

ConvNext blockx4
Conv2D

1 x 1
128 ch to Full res.

kernels

Conv2D
1 x 1

128 ch to 1/2 res.
kernels

Conv2D
1 x 1

256 ch to 1/4 res.
kernels

Conv2D
1 x 1

256 ch to 1/8 res.
kernels

Conv2D
1 x 1

512 ch to 1/16 res.
kernels

Fig. 1. Our ConvNext based architecture.

noise level. Please keep this in mind when comparing to metrics

reported in previous works.

We render the supervision reference images for our training

dataset at 6144 samples per pixel. Due to our scenes’ complexity,

some noise and fireflies are present in these images. Mitigating the

noise by increasing our reference sample count by several orders of

magnitude would make the generation of our dataset impractical.

Therefore, we use OIDN [Intel 2022] to denoise three uncorrelated

2048 spp estimates and take their median as our training reference.

We do not apply denoising to our test set.

Fig. 2. Randomly chosen frames from our training dataset.

C LOSS FUNCTION

We aim to train our model to reconstruct temporally stable videos

clean of noise. Previous work used Symmetric Mean Absolute Per-

centage Error as their metric of reconstruction quality:

SMAPE(�̂�𝑡 , 𝐿★𝑡) = E𝑥,𝑦

[
|�̂�𝑥,𝑦,𝑡 − 𝐿★𝑥,𝑦,𝑡 |

|�̂�𝑥,𝑦,𝑡 | + |𝐿★𝑥,𝑦,𝑡 | + 𝜖

]
, (4)

where �̂�𝑡 and 𝐿
★
𝑡 denote the denoised and reference frames at the

time 𝑡 , and 𝜖 = 10
−3
.

Unfortunately, we found that SMAPE, being a per-pixel loss func-

tion, does not strongly condition in the lower frequencies. SMAPE

also ignores the structural content of the images, often resulting in

a blurry look. Furthermore, while it is similar to the median seeking

L1 loss, it instead converges to brighter images than the median

due to the denominator in the formula. For these reasons, we revise

our loss function with a genuinely median seeking, perceptual, and

multiscale component in feature space as proposed in [Thomas et al.

2022]. We get the best results by blending the perceptual loss and

SMAPE:

L
spatial

𝑡 = 0.2∥ 𝑓 (𝑃𝑈 21(�̂�𝑡)) − 𝑓 (𝑃𝑈 21(𝐿★𝑡))∥1+
0.8 · SMAPE(�̂�𝑡 , 𝐿★𝑡), (5)

where 𝑓 extracts feature maps for frames �̂�𝑡 and 𝐿★𝑡 . For 𝑓 , we

implement the perceptual loss proposed by [Thomas et al. 2022],

with PU21 [Mantiuk and Azimi 2021] mapping from HDR inputs.

We also revise the temporal loss; previous methods take per-

pixel differences between frames. This approach corresponds to the

viewer not tracking any objects in the scene. While this scenario

is improbable, we cannot tell which object the viewer might be

2

Neural Partitioning Pyramids for Denoising Monte Carlo Renderings: Supplementary Material SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

tracking without additional eye-tracker hardware. Therefore, we

assume the viewer tracks each object in the scene, and thus we take

the difference between warped images:

L
temporal

𝑡 = 0.2

[𝑓 (𝑃𝑈 21(�̂�𝑡)) − 𝑓 (𝑃𝑈 21(W𝑡 �̂�𝑡−1))
]
−[

𝑓 (𝑃𝑈 21(𝐿★𝑡)) − 𝑓 (𝑃𝑈 21(W𝑡𝐿
★
𝑡−1

))
]

1

+

0.8 · SMAPE(�̂�𝑡 − W𝑡 �̂�𝑡−1, 𝐿
★
𝑡 − W𝑡𝐿

★
𝑡−1

), (6)

where W𝑡 stands for the warping operator from the previous frame

𝑡 − 1 to the current frame 𝑡 . The resulting videos generated by our

denoiser appear significantly more stable, as demonstrated in our

supplementary video.

Our complete loss is the sum of our temporal and spatial losses:

L𝑡 = L
spatial

𝑡 +L
temporal

𝑡 . (7)

Table 1. Radiance notations used in our work

𝑳𝑥𝑦𝑠𝑡 Per-sample radiance

𝑳𝑥𝑦𝑡 Per-pixel radiance

�̄�𝑥𝑦𝑡 Temporally accumulated radiance (until frame 𝑡)

�̄�𝑙𝑥𝑦𝑡 Downsampled (and partitioned) per-layer radiance

�̂�𝑙𝑥𝑦𝑡 Denoised per-layer radiance

�̃�𝑙𝑥𝑦𝑡 Composed per-layer radiance (until layer 𝑙 from coarser layers)

�̃�0

𝑥𝑦𝑡 Unstable denoised output

𝑶𝑥𝑦𝑡 Temporally stabilised output

REFERENCES

Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan

Gundogdu, Xi Zhang, Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora,

Matthieu Guillaumin, and Jitendra Malik. 2022. ABO: Dataset and Benchmarks for

Real-World 3D Object Understanding. CVPR (2022).

J Hasselgren, J Munkberg, M Salvi, A Patney, and A Lefohn. 2020. Neural Temporal

Adaptive Sampling and Denoising. In Computer Graphics Forum, Vol. 39. Wiley

Online Library, 147–155.

Intel. 2022. Intel Open Image Denoise. https://www.openimagedenoise.org/.

Mustafa Işık, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaël Gharbi.

2021. Interactive Monte Carlo denoising using affinity of neural features. ACM
Transactions on Graphics (TOG) 40, 4 (2021), 1–13.

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’aš Davidovič, Kai-Hwa Yao, Theresa

Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman, Cyril

Crassin, and Nir Benty. 2022. The Falcor Rendering Framework. https://github.

com/NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and

Saining Xie. 2022. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 11976–11986.

Rafał K. Mantiuk and Maryam Azimi. 2021. PU21: A novel perceptually uniform

encoding for adapting existing quality metrics for HDR. In 2021 Picture Coding
Symposium (PCS). 1–5. https://doi.org/10.1109/PCS50896.2021.9477471

Jacob Munkberg and Jon Hasselgren. 2020. Neural denoising with layer embeddings.

In Computer Graphics Forum, Vol. 39. Wiley Online Library, 1–12.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation (3rd ed.) (3rd ed.). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA.

Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista,

Nathan Paczan, Russ Webb, and Joshua M. Susskind. 2021. Hypersim: A Photore-

alistic Synthetic Dataset for Holistic Indoor Scene Understanding. In International
Conference on Computer Vision (ICCV) 2021.

Manu Mathew Thomas, Gabor Liktor, Christoph Peters, Sungye Kim, Karthik

Vaidyanathan, and Angus G Forbes. 2022. Temporally Stable Real-Time Joint Neural

Denoising and Supersampling. Proceedings of the ACM on Computer Graphics and
Interactive Techniques 5, 3 (2022), 1–22.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

and Ming-Hsuan Yang. 2022. Restormer: Efficient transformer for high-resolution

image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 5728–5739.

3

https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1109/PCS50896.2021.9477471

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafał Mantiuk

Co
m

po
si

tio
n

l =
 0

l =
 1

l =
 2

l =
 3

Fig. 3. Further examples of our predicted partitioning. The images correspond to the fourth column of Figure 6, showing the layers after denoising and

upsampling. In the Zero-Day scene on the left, our denoiser seems to partition diffuse lighting affecting larger areas into coarser layers and keep local

highlights in fine-resolution layers. The middle column shows a synthetic example of the contrast sensitivity function, illustrating the frequency sensitivity of

our partitioning. Note how our upsampler preserves the transitions between different regions, despite the varying frequency. In the Bistro3 scene on the right,

our denoiser again uses the coarse layers to reconstruct the diffuse lighting of the scene accurately, handling the challenging scenario with many light sources.

4

	A Backbone architecture
	A.1 Input feature mappings
	A.2 Sample encoder
	A.3 OursSmall
	A.4 OursLarge

	B Dataset
	C Loss function
	References

